Физика

5.4. Практическое применение уравнения состояния идеального газа
5.4.3. Уравнение состояния для газа, находящегося в сосуде под поршнем

Для идеального газа, находящегося в сосуде под поршнем, необходимо учитывать следующее:

  • масса газа, находящегося в сосуде под поршнем, вследствие изменения термодинамических параметров газа не изменяется:

m = const;

  • постоянным остается также количество вещества (газа):

ν = const;

  • плотность газа и концентрация его молекул (атомов) изменяются:

ρ ≠ const, n ≠ const.

Пусть изменение состояния идеального газа, находящегося в цилиндрическом сосуде под поршнем, вызвано действием на поршень внешней силы F (рис. 5.9).

Рис. 5.9

Начальное и конечное состояния газа в сосуде под поршнем описываются следующими уравнениями:

p 1 V 1 = ν R T 1 , p 2 V 2 = ν R T 2 , }

где p 1, V 1, T 1 — давление, объем и температура газа в начальном состоянии; p 2, V 2, T 2 — давление, объем и температура газа в конечном состоянии; ν — количество вещества (газа); R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).

Условия равновесия поршня, закрывающего идеальный газ в сосуде (см. рис. 5.9), в начале процесса и в конце процесса выглядят следующим образом:

M g + F A = F 1 , M g + F A + F = F 2 , }

где M — масса поршня; g — модуль ускорения свободного падения; F A — модуль силы атмосферного давления, F A = p AS; p A — атмосферное давление; S — площадь сечения поршня; F 1 — модуль силы давления газа на поршень в начале процесса, F 1 = p 1S; p 1 — давление газа в сосуде в начальном состоянии; F — модуль силы, вызывающей сжатие газа; F 2 — модуль силы давления газа на поршень в конце процесса, F 2 = p 2S; p 2 — давление газа в сосуде в конечном состоянии.

Температура идеального газа, находящегося в сосуде под поршнем, может как изменяться, так и оставаться неизменной:

  • если процесс движения поршня происходит достаточно быстро, то температура газа изменяется —

T ≠ const;

  • если процесс происходит медленно, то температура газа остается постоянной –

T = const.

Давление идеального газа, находящегося в сосуде под поршнем, также может изменяться или оставаться неизменным:

  • если в задаче сказано, что поршень является легкоподвижным, то давление газа под поршнем — неизменно (в том случае, когда из условия задачи не следует обратное) — p = const;
  • в остальных случаях давление газа под поршнем изменяется — p ≠ const.

Масса поршня, закрывающего газ в сосуде, либо равна нулю, либо имеет отличное от нуля значение:

  • если в задаче сказано, что поршень является легким или невесомым, то масса поршня считается равной нулю —

M = 0;

  • в остальных случаях поршень обладает определенной ненулевой массой —

M ≠ const.

Пример 19. В вертикальном цилиндре под легкоподвижным поршнем сечением 250 мм2 и массой 1,80 кг находится 360 см3 газа. Атмосферное давление равно 100 кПа. На поршень поставили гири, и он сжал газ до объема 240 см3. Температура газа при его сжатии не изменяется. Определить массу гирь.

Решение. На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g ;
  • сила атмосферного давления F A ;
  • сила давления газа F 1 , действующая со стороны газа (до его сжатия);
  • сила давления газа F 2 , действующая со стороны газа (после его сжатия);
  • m g  — вес гирь.

Условие равновесия поршня запишем в следующем виде:

  • до сжатия газа —

F 1 = Mg + F A,

где F 1 — модуль силы давления газа, F 1 = p 1S; p 1 — давление газа до сжатия; S — площадь поршня; Mg — модуль силы тяжести поршня; M — масса поршня; F A — модуль силы атмосферного давления, F A = p AS; p A — атмосферное давление; g — модуль ускорения свободного падения;

  • после сжатия газа —

F 2 = Mg + F A + mg,

где F 2 — модуль силы давления газа, F 2 = p 2S; p 2 — давление газа после сжатия; mg — вес гирь; m — масса гирь.

Считая процесс сжатия газа изотермическим, запишем уравнение Менделеева — Клапейрона для газа под поршнем следующим образом:

  • до его сжатия —

p 1V 1 = νRT,

где V 1 — первоначальный объем газа под поршнем; ν — количество газа под поршнем; R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T — температура газа (не изменяется в ходе процесса);

  • после его сжатия —

p 2V 2 = νRT,

где V 2 — объем сжатого поршнем газа.

Равенство

p 1V 1 = p 2V 2

и два условия равновесия, записанные в явном виде, образуют полную систему уравнений:

p 1 S = M g + p A S , p 2 S = M g + p A S + m g , p 1 V 1 = p 2 V 2 , }

которую требуется решить относительно массы гирь m.

Для этого выразим отношение давлений p 2/p 1 из первой пары уравнений:

p 2 p 1 = M g + p A S + m g M g + p A S

и из третьего уравнения:

p 2 p 1 = V 1 V 2 ,

запишем равенство правых частей полученных отношений:

M g + p A S + m g M g + p A S = V 1 V 2 .

Отсюда следует, что искомая масса определяется формулой

m = ( M + p A S g ) ( V 1 V 2 1 ) .

Вычисление дает результат:

m = ( 1,80 + 100 10 3 250 10 6 10 ) ( 360 10 6 240 10 6 1 ) = 2,15 кг.

Указанное сжатие газа вызвано гирями массой 2,15 кг.

Пример 20. Открытый цилиндрический сосуд сечением 10 см2 плотно прикрывают пластиной массой 1,2 кг. Атмосферное давление составляет 100 кПа, а температура окружающего воздуха равна 300 К. На сколько градусов нужно нагреть воздух в сосуде, чтобы он приподнял пластину?

Решение. На рисунке показаны силы, действующие на пластину после нагревания газа:

  • сила тяжести пластины M g ;
  • сила атмосферного давления F A ;
  • сила давления газа F 2 , действующая на пластину со стороны нагретого газа.

Пластина находится в состоянии неустойчивого равновесия; условие равновесия пластины выглядит следующим образом:

F 2 = Mg + F A,

где F 2 — модуль силы давления нагретого газа, F 2 = p 2S; p 2 — давление нагретого газа; S — площадь сечения сосуда; Mg — модуль силы тяжести пластины; M — масса пластины; g — модуль ускорения свободного падения; F A — модуль силы атмосферного давления, F A = p AS; p A — атмосферное давление.

Запишем уравнение Менделеева — Клапейрона следующим образом:

  • для газа в сосуде до его нагревания

p 1V = νRT 1,

где p 1 — давление газа в сосуде до нагревания (совпадает с атмосферным давлением), p 1 = p A; V — объем газа в сосуде; ν — количество вещества (газа) в сосуде; R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 — температура газа в сосуде до нагревания (совпадает с температурой окружающей среды);

  • для газа в сосуде после его нагревания

p 2V = νRT 2,

где p 2 — давление нагретого газа; T 2 — температура нагретого газа.

Два уравнения состояния газа (до и после нагревания) и условие равновесия пластины, записанные в явном виде, образуют полную систему уравнений:

p A V = ν R T 1 , p 2 V = ν R T 2 , p 2 S = M g + p A S ; }

систему необходимо решить относительно температуры T 2, до которой следует нагреть газ.

Для этого делением первой пары уравнений

p A V p 2 V = ν R T 1 ν R T 2

получим выражение для давления нагретого газа:

p 2 = p A T 2 T 1

и подставим его в третье уравнение системы:

p A T 2 S T 1 = M g + p A S .

Преобразуем полученное выражение к виду

T 2 = T 1 ( M g + p A S ) p A S = T 1 ( M g p A S + 1 ) ,

а затем найдем разность

Δ T = T 2 T 1 = M g T 1 p A S .

Произведем вычисление:

Δ T = 1,2 10 300 100 10 3 10 10 4 = 36  К = 36  °С.

Пример 21. В цилиндрическом сосуде поршень массой 75,0 кг и площадью сечения 50,0 см2 начинает двигаться вверх. Давление газа под поршнем постоянно и равно 450 кПа, атмосферное давление составляет 100 кПа. Считая, что поршень движется без трения, определить модуль скорости поршня после прохождения им 3,75 м пути.

Решение. На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g ;
  • сила атмосферного давления F A ;
  • сила давления газа F , действующая на поршень со стороны нагретого газа.

Под действием указанных сил, направленных вверх, поршень движется с ускорением a :

F + F A + M g = m a ,

или в проекции на вертикальную ось —

F − F A − Mg = Ma,

где F — модуль силы давления газа под поршнем, F = pS; p — давление газа; S — площадь поршня; Mg — модуль силы тяжести поршня; M — масса поршня; g — модуль ускорения свободного падения; a — модуль ускорения поршня.

Преобразуем записанное уравнение, выразив модуль ускорения и выполнив подстановку выражений для модулей сил:

a = F F A M g M = ( p p A ) S M g .

Скорость поршня, его ускорение и пройденный путь связаны между собой соотношением

l = v 2 2 a ,

где l — пройденный путь; v — модуль скорости поршня.

Выразим отсюда модуль скорости поршня:

v = 2 a l

и подставим в записанную формулу выражение для модуля ускорения:

v = 2 l ( ( p p A ) S M g ) .

Выполним расчет:

v = 2 3,75 ( ( 450 100 ) 10 3 50 10 4 75,0 10 ) 10 м/с.

После прохождения 3,75 м пути поршень приобретет скорость, приблизительно равную 10 м/с.